首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   993篇
  免费   110篇
  国内免费   185篇
化学   957篇
晶体学   24篇
力学   49篇
综合类   7篇
数学   3篇
物理学   248篇
  2024年   2篇
  2023年   16篇
  2022年   19篇
  2021年   38篇
  2020年   54篇
  2019年   48篇
  2018年   26篇
  2017年   45篇
  2016年   45篇
  2015年   40篇
  2014年   53篇
  2013年   121篇
  2012年   84篇
  2011年   56篇
  2010年   42篇
  2009年   45篇
  2008年   35篇
  2007年   64篇
  2006年   59篇
  2005年   49篇
  2004年   40篇
  2003年   38篇
  2002年   25篇
  2001年   23篇
  2000年   32篇
  1999年   26篇
  1998年   18篇
  1997年   22篇
  1996年   12篇
  1995年   29篇
  1994年   18篇
  1993年   20篇
  1992年   13篇
  1991年   5篇
  1990年   5篇
  1989年   9篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1288条查询结果,搜索用时 93 毫秒
41.
以甲基丙烯酸甲酯(MMA)和三氯甲烷(CHCl3)为油相制备反胶束微乳液, 依靠表面活性剂十六烷基三甲基溴化铵(CTAB)自组装形成的“微反应器”作为模板成功地制备了PMMA/Eu(OH)3/EG和PMMA/Ni(OH)2/EG纳米复合材料. 并用红外光谱(IR)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和差热-热重(TG-DTA)对该复合材料进行了表征和分析. 研究结果表明, 反胶束法可以有效地应用于有机-无机纳米复合材料的制备.  相似文献   
42.
An intumescent flame retardant coating was prepared with resin, solvent and flame retardant system composed of ammonium polyphosphate-APP, pentaerythritol-PER and melamine-MEL. The modifiers such as molybdenum disilicide (MoSi2) and expandable graphite (EG) were used to improve the performances of the APP-PER-MEL coating. The effects of EG, MoSi2 and MoSi2/EG on the fireproofing time and char formation of the coating were investigated by using heat insulation test, thermogravimetric analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electric microscope (SEM). The results showed that by adding modifiers, the fireproofing time was prolonged and char formation rate was evidently enhanced. The largest improvement was achieved with 9 wt.% MoSi2/5 wt.% EG, XPS analysis indicated that the performance of anti-oxidation of the coating was improved by adding EG and MoSi2, and SEM images showed that a good synergistic effect was obtained through a ceramic-like layer produced by MoSi2 covered on the surface of “open-cellular” structural char.  相似文献   
43.
本文应用x-射线衍射(XRD)、X-射线光电子能谱(XPS)、俄歇电子能谱(AES)、扫描电子显微技术(SEM)研究了钼酸铵在石墨炉内石墨探针表面上的原子化机理。实验结果表明,在温度<1350K时,钼酸铵经历MoO_3和Mo_4O_(11)中间产物转变为MoO_2(s)。在更高温度下,MoO_2(s)首先还原为Mo_2C,而后进一步转变为MoC(s)。MoC再分解为Mo(s)。钼的原子化起源于Mo的升华。  相似文献   
44.
A supported liquid and a poly(vinyl chloride) (PVC)-based membrane selective for dodecylsulfate (DS) ion are described. The active element is a membrane containing a dissolved ion association complex of DS with cetylpyridinium (CP+) cation. The supported liquid membrane electrode (acetophenone as solvent) showed a Nernstian response towards the DS anion over the concentration range of sodium dodecylsulfate (SDS) from 8.3×10−3 to 1.0×10−6 mol dm−3 at 25 °C. The proposed electrode also showed a super-Nernstian potential response (108±2 mV decade−1) at low concentrations (1.0×10−9 to 1.0×10−6 mol dm−3). Moreover, this electrode showed good selectivity and precision (R.S.D.?2.0%), and was usable within the pH range 4.0-6.8. The proposed electrode revealed a lower limit of detection of 6.3×10−7 mol dm−3 and improved selectivity in comparison with the some previously reported DS ion selective electrodes. The isothermal temperature coefficient of this electrode amounted to −0.001 V °C−1. The liquid membrane electrode may find application in the direct determination of SDS by the standard addition method at pH 5.0, and in the physicochemical studies of surfactant solutions.  相似文献   
45.
Graphite arc emission spectrometry has become possible as a result of the invention of novel types of optical spectrometers with Echelle-optics and semiconductor array detectors, and by the application of electronically controlled, high current arc generators. An optimization of the excitation parameters to boron carbide analysis is reported here, measuring background corrected line intensities that were integrated for the time of total evaporation of 5 mg boron carbide sample with or without added chemical modifiers. The following set of experimental conditions were compared with respect of analytical sensitivity and precision: (A) no modifier, Ar + O2 (20%), 16 A; (B) sample + graphite powder (1 + 1), Ar + O2 (20%), 16 A; (C) sample + CaF2 (1 + 1), Ar, 25 A; (D) sample + CaF2 + graphite powder (1 + 1 + 1), Ar, 25 A. The graphite powder modifier resulted in improved precision in general, and the CaF2 was effective as a plasma ionization buffer and fluorinating agent. The best compromise was found under conditions B, when oxygen was present in the discharge atmosphere. This is likely due to the stepwise conversion of the boron carbide matrix to the more volatile boron oxide. Under conditions B, detection limits in the ranges of 0.3–9 μg g−1 for Al, Ca, Cr, Cu, Fe, Mg, Mn and Si and that of 18–38 μg g−1 for Ti, W, and Zr were attained. Average RSDs of 10.2 and 9.7% were found, respectively, without and with internal referencing to boron.  相似文献   
46.
Anodic oxidation of highly oriented pyrolytic graphite in an electrolyte containing concentrated sulfuric and anhydrous phosphoric acids is studied for the first time. The synthesis was carried out under galvanostatic conditions at a current I = 0.5 mA and an elevated temperature (t = 80°C). Intercalation compounds of graphite (ICG) are shown to form at all concentration ratios of H2SO4 and H3PO4 acids. The intercalation compound of step I forms in solutions containing more than 80 wt % H2SO4, a mixture of compounds of intercalation steps I and II forms in 60% H2SO4, intercalation step II is realized in the sulfuric acid concentration range from 10 to 40%, and a mixture of compounds of intercalation steps III and II is formed in 5% H2SO4 solutions. The threshold concentration of H2SO4 intercalation is ∼2%. With the decrease in active intercalate (H2SO4) concentration, the charging curves are gradually smoothed, the intercalation step number increases, and the potentials of ICG formation also increase. As the sulfuric acid concentration in the electrolyte changes from 96 to 40 wt %, the filled-layer thickness d i in ICG monotonously increases from 0.803 to 0.820 nm, which apparently is associated with the greater size of phosphoric acid molecules. With further increase in H3PO4 concentration in solution, d i remains unchanged. According to the results of chemical analysis, both acids are simultaneously incorporated into the graphite interplanar spacing and their ratio in ICG is determined by the electrolyte composition.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 651–655.Original Russian Text Copyright © 2005 by Leshin, Sorokina, Avdeev.  相似文献   
47.
Ligustrazine is one of the active ingredients contained in Ligusticum chuanxiong Hort. (Umbelliferae), which is widely used in traditional Chinese medicine for the treatment of cardiovascular problems. In this work, the electrochemistry of Ligustrazine hydrochloride (LZC) and its determination are investigated. The detection limit is estimated to be 8.0×10–8 M, with three linear ranges from 1.0×10–6 to 1.0×10–4 M, 1.0×10–4 to 5.0×10–4 M, and 6.5×10–4 to 1.6×10–3 M. The method has been proved to be highly sensitive, selective, and stable, and has been successfully applied to determining LZC in LZC injections.  相似文献   
48.
A novel flow-injection amperometric method was proposed for the sensitive and enzymeless determination of hydrogen peroxide based on its electrocatalytic reduction at a palladium nanoparticle-modified pretreated pencil graphite electrode in a laboratory-constructed electrochemical flow cell. Cyclic voltammograms of the unmodified and modified electrodes were recorded in pH 7.0 phosphate buffer containing 0.10 M KCl at a scan rate of 50?mV s?1 for the investigation of electrocatalytic reduction of hydrogen peroxide at the palladium nanoparticle-modified pretreated pencil graphite electrode. Cyclic voltammograms of the pretreated pencil graphite electrode revealed an irreversible oxidation peak and a weak reduction peak of hydrogen peroxide at +1100?mV and –450?mV vs. an Ag/AgCl/KCl saturated reference electrode. However, the reduction of hydrogen peroxide was observed at –100?mV with an increase in current in the cyclic voltammograms of the palladium nanoparticle-modified pretreated pencil graphite electrode compared to the unmodified electrode. These results indicate that the palladium nanoparticle-modified pretreated pencil graphite electrode exhibits efficient electrocatalytic activity for the reduction of hydrogen peroxide. A linear concentration range was obtained between .01 and 10.0?mM hydrogen peroxide with a detection limit of 3.0 µM from flow injection amperometric current–time curves recorded in pH 7.0 phosphate buffer at –100?mV and a 2.0?mL min?1 flow rate. The novelty of this work relies on its use of a laboratory-constructed flow cell constructed for the pencil graphite electrode using these inexpensive, disposable, and electrochemically reactive modified electrodes for the amperometric determination of hydrogen peroxide in a flow injection analysis system.  相似文献   
49.
《Electroanalysis》2004,16(11):949-954
The preparation and the electrochemical study of Disperse Blue 1‐chemically modified electrodes (DB1‐CME), as well as their efficiency for the electrocatalytic oxidation of NADH is described. The proposed mediator was immobilized by physical adsorption onto graphite electrodes. The electrochemical behavior of DB1‐CME was studied with cyclic voltammetry. The electrochemical redox reaction of DB1 was found to be reversible, revealing two well‐shaped pair of peaks with formal potentials 152 and ?42 mV, respectively, (vs. Ag/AgCl/3M KCl) at pH 6.5. The current Ip has a linear relationship with the scan rate up to 800 mV s?1, which is indicative for a fast electron transfer kinetics. The dissociation constants of the immobilized DB1 redox couple were calculated pK1=4 and pK2=5. The electrochemical rate constants of the immobilized DB1 were calculated k1°=18 s?1 and k2°=23 s?1 (Γ=2.36 nmol cm?2). The modified electrodes were mounted in a flow injection manifold, poised at +150 mV (vs. Ag/AgCl/3M KCl) and a catalytic current due to the oxidation of NADH was measured. The reproducibility was 1.4% RSD (n=11 for 30 μM NADH) The behavior of the sensor towards different reducing compounds was investigated. The sensor exhibited good operational and storage stability.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号